ー点炉動特性方程式の 溶融塩高速炉への 適用性検討

日本原子力学会春の年会 2D06 2025年3月13日 田原義壽[NAIS]、石塚知香子[科学大]

検討の目的:炉内の状態が動特性パラメータに与える影響を 評価する。

計算法と計算モデル

動特性パラメータ(β_{eff} など): 名内氏のIFP法を採用

核データライブラリ: JEFF-3.3, ENDF/B-VIII.0

計算形状: 高さ5等分割、半径方向△r一定5分割

縦方向分割図

径方向分割図

炉内温度分布がβ_{eff}に与える影響³

4

温度変化の効果: ① 溶融塩密度の効果、② 原子核のDoppler効果

	計	算条件	備考
	温度分布	ボイド率分布	JEFF-3.3
温度分布の	基準[平均温度] (892.32K)	基準[平均ボイド率] (0.002)	$k_{eff} = 1.00205 (基準)$ $eta_{eff} = 0.0037372 (基準)$
影響評価	温度分布あり [上図参照]	同上	$k_{e\!f\!f} = 1.00200 \; (-5 { m pcm})$ $eta_{e\!f\!f} = 0.0037031 \; (-0.\; 9\%)$

ボイドの効果: ① 溶融塩密度の効果

	計算条件		備考	
	温度分布	ボイド率分布	JEFF3.3	
ボイド分布の 影響評価	基準[平均温度]	基準[平均ボイド率]	k _{eff} =1.00205 (基準)	
	(892.32K)	(0.001954)	$eta_{\scriptscriptstyle eff} = 0.0037372 (基準)$	
	同上	ボイド分布あり [上図参照]	$k_{e\!f\!f} = 1.00177 \;(-28 { m pcm})$	
			$\beta_{eff} = 0.0037246 \ (-0.3\%)$	

各群の遅発中性子割合と 先行核崩壊定数の変化

各群の遅発中性子割合 β_iの温度分布の影響 (ENDF/B-VIII.0, Nauchi method)

遅発中性子群 条件	1G	2G	3G	4G	5G	6G
基準(平均ボイド率、	9.24366	7.23399	5.28331	1.32053	7.34374	2.67330
平均温度)	× 10 ⁻⁵	× 10 ⁻⁴	×10 ⁻⁴	×10 ⁻³	× 10 ⁻⁴	×10 ⁻⁴
摂動(平均ボイド率、	8.21438	7.30235	5.39940	1.28664	7.27551	2.60989
温度分布あり)	× 10 ⁻⁵	× 10 ⁻⁴	×10 ⁻⁴	×10 ⁻³	× 10 ⁻⁴	×10 ⁻⁴
基準に対する相対差 _(%) <mark>∆β</mark> / β	-11.1	0.9	2.2	-2.6	-0.1	-2.3

各群の先行核崩壊定数 λ_iの温度分布の影響 (ENDF/B-VIII.0, Nauchi method)

	1G	2G	3G	4G	5G	6G
基準(平均ボイド率、	1.33853	3.08279	1.17179	3.07312	8.78458	2.94370
平均温度)	×10 ⁻²	× 10 ⁻²	×10 ⁻¹	×10 ⁻¹	× 10 ⁻¹	× 10 ⁺⁰
摂動(平均ボイド率、	1.34040	3.08025	1.17245	3.07574	8.77918	2.93036
温度分布あり)	×10 ⁻²	× 10 ⁻²	×10 ⁻¹	×10 ⁻¹	×10 ⁻¹	×10 ⁻⁰
基準に対する相対差 (%) <mark>Δλ/</mark> λ	0.14	-0.08	0.06	0.09	-0.06	-0.45

5

動特性パラメータの変化が反応度 に与える影響

反応度と炉周期を結ぶ逆時間方程式

 $\beta_{eff,i}$ 、 λ_i および Λ の変化が反応度に与える影響

まとめ

I. 本研究結果

・温度分布、ボイド率分布の存在による動特性パラメータの変化および、
 反応度の変化は無視できる。

従って、動特性パラメータはそれらの平均値を用いた炉心条件で計算 すればよい。

- ||. 今後の研究:
 - ・燃料の流れに伴い遅発中性子先行核濃度が崩壊定数に依存して
 軸方向に変化し、且つ一部は炉外へ流出するため、動特性パラメータ
 に与える影響を評価する。

本研究は、経済産業省の令和6年度「社会的要請に応える革 新的な原子力技術開発支援事業」の一環として、原子力研究 開発機構から委託を受けて実施したものである。

溶融塩炉設計の参考

- Request for ³⁵ Cl(n, p) reaction cross-section measurements and re-evaluations from the standpoint of molten chloride salt fast reactor. [Tahara, Hirano, Chiba, Mochizuki, Katabuchi].
- 2 Evaluation of transmutation capability of TRU and MA in a 700MWt molten chloride salt fast reactor. [Tahara, Ishizuka, Hirano]. submitted.